WORLDTECH LCD LTD

APPROVAL SHEET

Customer	:	
Part Name	:	LCD MODULE
Model NO.	:	GDM240128A
Drawing NO.	:	
Approved by	:	
Date	:	2005.06.03

Approved by	Checked by	Prepared by	Sheet code
			2005-06-03

Т

CONTENTS

1.	Scope	2
2.	Warranty	2
3.	Features	2
4.	Dimensional outline	6
5.	I/O terminals	7
6.	Quality level	23
7.	Reliability	-26
8.	Handling precautions	-26
9.	Precaution for use	-28
10	.Appendix	-28

1. Scope

This manual defines general provisions as well as inspection standards for LCD module supplied by Worldtech LCD LTD

If the event of unforeseen problem or unspecified items may occur, please contact the nearest supplier or our company for solution.

2. Warranty

If module is not stored or used as specified in this manual, it will be void the 12 months warranty.

3. Features

3-1. Features:

Display Mode: Transflective and Positive type

STN LCD

Display Color: Display Dots: Black

Background: Light Gray

Display Format: $240(w) \times 128(h)$ full dots

Input Data: 8-bits parallel data interface from a MPU

Multiplexing Ratio: 1/128 Duty Viewing Angle: 6 o'clock

Back Light: LED backlight White
Display RAM Capacity: 32k byte S-RAM (built-in)

Controller Type: T6963C (built-in)

CG ROM/RAM Capacity: Built-in 128 words character generator (CG) ROM.

3-2. Mechanical Specifications:

Item	Specifications	Unit	
Dimensional Outline	144.0(W)×104.0(H) ×16.0 Max.	mm	
Number of Dots	240(W) ×128(H) Dots	_	
	$40C \times 16L(640)$ in case of 6×8 Fonts		
Number of Characters	$30C \times 16L(480)$ in case of 8×8 Fonts	_	
Viewing Area	114.0(W)×64.0(H)		
Active Area	107.95(W)×57.55(H)	mm	
Dot Pitch	0.45(W)×0.45(H)	mm	
Dot Size	0.40(W)×0.40(H)	mm	
Weight	Approx. 180	g	

3-3. Absolute Maximum Rating

Ite	m	Symbol	Min.	Max.	Unit	Note
Supply	Logic	Vdd	-0.3	7.0	V	Vss=0V
Voltage	LCD drive	Vdd – Vee	0	28	V	
Input Voltage		Vi	-0.3	Vdd+0.3	V	Vss=0V
Operating Temperature		Тор	-10	60	$^{\circ}$	
Storage Tempo	erature	Tstg	-20	70	$^{\circ}$	
Humidity		_	_	90	%RH	

3-4. Electrical Characteristics:

3-4-1. Electrical Characteristics

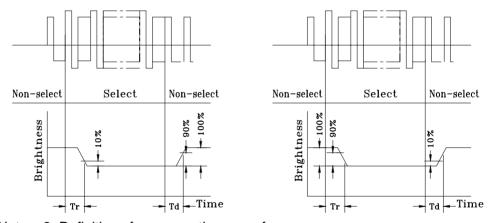
Note: <1> Duty =1/128 <2> All dots on static state

Ite	em	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply	Logic	Vdd		4. 5	5.0	5. 5	
Voltage	LCD drive	Vdd-Vee		_	20	25.0	
Input	"H" Level	Vih	Vdd=5V±5%	Vdd-2.2	_	Vdd	V
Voltage	"L" Level	Vil		0	_	0.8	V
Output	"H" Level	Voh	Vdd=5V±5%	Vdd-0.3	_	Vdd	
Voltage	"L" Level	Vol		0	_	0.3	
Frame F	requency	Fflm	Vdd=5V	70	75	80	Hz
Current	Logic	ldd	Vdd=5V Vdd-Vee=20.0V	_	5.7	10.0	mΛ
Consumption	Consumption LCD drive		Fflm=75Hz	_	5.4	9.8	mA
			Ta= -10°C Φ =0° , θ =0°	_	20.8	_	
LCD Driving Voltage (Recommended Voltage)		Vdd-Vee	Ta= 25℃ Φ=0°, θ=0°	_	20.0	_	٧
			Ta= 60℃ Φ=0°, θ=0°	_	19.5	_	

3-4-2 Specifications for E/L backlight

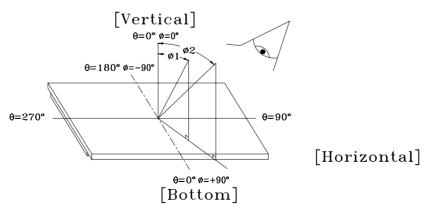
Item	Unit	Standard Values			Conditions	
nem	Offic	Min.	Тур.	Max.	Conditions	
Supply Voltage	V	_	5.0	_	_	
Supply Frequency	mA	_	72	1	DC5.0 Vrms, Dark room	
Lifetime	Hrs		10000		Note <1>	
Luminous Color	_		White		DC5.0Vrms, Dark room	
Operating Temperature	$^{\circ}$		-30~70	•	_	
Storage Temperature	$^{\circ}$		-40 ~ 85	;	_	

Note<1>: Half value of initial brightness at 20°C 60%RH

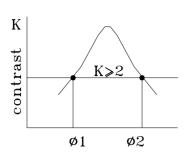

3-5. Electro-optical Characteristics:

lte	em	Symbol	Temp.	Conditions	Min.	Тур.	Max.	Unit	Note		
L CD Drive	LCD Driving Voltage		-10℃			20.8	24.0				
	ng voltage ded voltage)	Vop	25 ℃	Φ =0°, θ =0°	1	20.0	1	V	1,2,5		
(Recommen	ded voltage)		60℃			19.5	_				
Response	Rise Time	tr	0℃		-	1500	2000				
Time	Nise Tillie		u	u	25 ℃	$\Phi = 0^{\circ}$, $\theta = 0^{\circ}$		150	200	mS	1,3,5
	Decay		0℃				3000	3500			
	Time	td	25 ℃		1	200	250				
Viewing Angle		ΔΦ		25° C	Vertical	-35	_	35	4	4 4 5	
			25℃	Horizontal	-30	_	30	deg.	1,4,5		
Contra	st Ratio	K	25 ℃	$\Phi = 0^{\circ}$, $\theta = 0^{\circ}$	2.0	5.0		_	1,5,6		

Note: <1> Definition of Φ and θ


<2> Contrast ratio higher than 2 (k≥2) can be obtained in this voltage range.

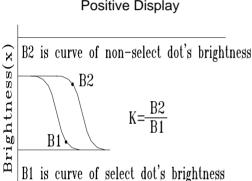
Negative Display



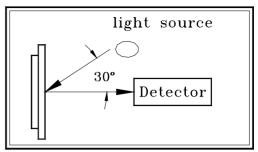
Note: <3>Definition of response time waveform

Positive Display

Note: <4>Definition of viewing angle $(\Delta \Phi) \Delta \Phi = |\Phi - \Phi 2|$

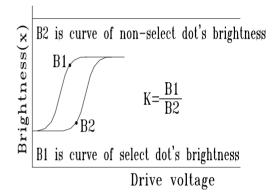


Viewing angle

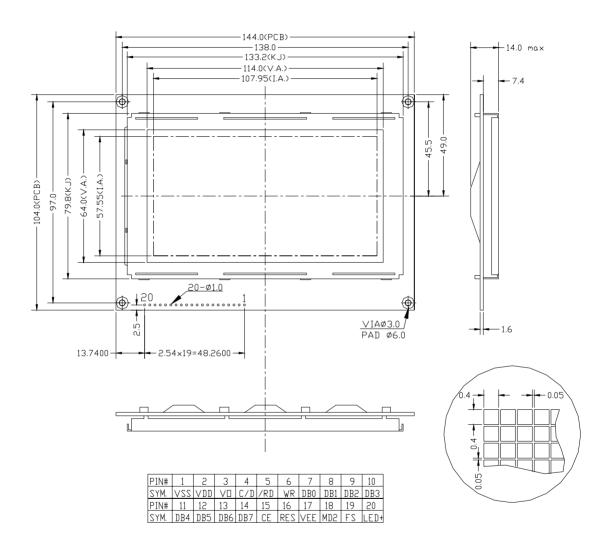

Note: <6> Definition of Contrast Ratio (K)

Positive Display

Drive voltage



Note: <5> Optical measuring system temperature regulated chamber

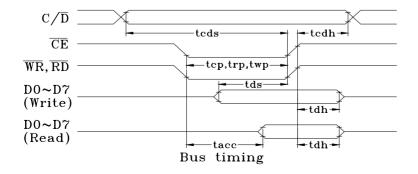

Measuring equipment: DMS (Made in AUTRONIC)

Negative Display

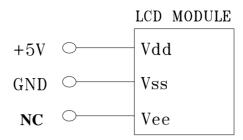
Contrast Ratio (K) = $\frac{\text{Brightness of non-selected dot (B2)}}{\text{Brightness of selected dot (B1)}}$

4. Dimensional Outline

5. I/O terminals

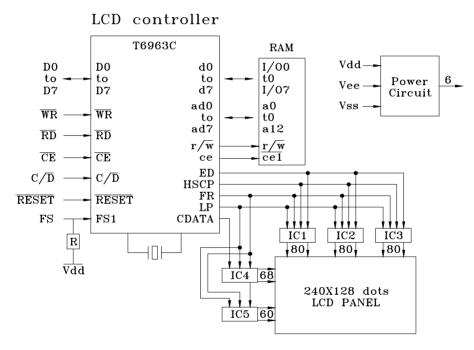

Note: The following explanation is applied for the module without built-in voltage converter.

5-1. I/O Connection


Pin No,	Symbol	Function
1	VSS	Signal ground(GND)
2	VDD	power supply for logic(+5V)
3	V0	Contrast adjustment
4	C/D	H/L Register select signal
5	RD	Data read (Active at "L")
6	WR	Data write (Active at"L")
7~14	D0~D7	Data Bus(D0=LSB,D7=MSB)
15	CE	Data read (Active at "L")
16	RES	Reset signal
17	VEE	Power supply for LCD drive
18	MD2	H=32,L=40
10	FS	Font Select: Connected to Vdd: 6×8 dots font
19	г5	Connected to Vss: 8×8 dots font
20	LED+	Power supply for backlight

5-2. Signal Timing Diagram:

Item	Symbol	Condition	Min.	Max.	Unit
C/D set-up time	tcds		100	_	
C/D hold time	tcdh		10	1	
CE,RD,WR pulse width	tcp,trp,twp	Vdd=5V \pm 5%	80	1	
Data set-up time	tds	Vss=0V	80	1	ns
Data hold time	tdh	Ta=25°C	40	1	
Access time	tacc			150	
Output hold time	toh		10	50	


5-3. Example of Power Supply

Note: There is an end on the potentiometer for regulating contrast ratio.

5-4. Circuit Block Diagram

The circuit block diagram is shown in the following figure. The LCD module needs

Block diagram

two power sources: Vdd for logic and Vee for LCD drive.

Note: It is necessary to guard all signals from external noise as signal lines are directly connected to C-MOS and are not pull-up or pull-down internally.

5-5. Application features of module:

- (1) This module can be directly connected to 8080MPU or Z80MPU.
- (2) This module can be set to display in combined display of graphic and text

- (Contents of the text area and of the graphic area are displayed on the screen simultaneously by mode set.) and in attribute display of text mode.
- (3) MPU can access the DDRAM at any time in the mode of byte / bit operation.
- (4) Character Font: 6×8 dots or 8×8 dots
- (5) A status check must be performed before data or command are read or written.
- (6) Both the column/line counter and display register are cleared by RESET. (Other registers are not cleared.) DDRAM is kept intact. Disable the display using the clear-display register. After power on, it is necessary to reset by software.
- (7) By the hardware setting, display columns are defined 40 characters long, maximum transferable amount of data every line.
- (8) Display lines are defined 128 by hardware setting.
- (9) This module has a 128-word character generator ROM (see appendix), and allocation of external character generator RAM can be made easily in DDRAM.
- character area. The text home address and the graphic home address correspond to the display bit on the top left corner of the LCD panel. In 6 ×8 dot matrix, one byte in the text area corresponds to a character on the screen. One byte in graphic area corresponds to 6×1 dot matrix on the screen (The lower 6 bits of a byte are valid).
- (11) Cursor display mode is on only in the text mode and what is displayed is the logic OR of cursor and the character where the cursor is.
- (12) For some commands that need operand data, it is important to send the operand data first and then the command code.
- (13) Text Attribute mode is only applicable in text mode. (In this case, text mode and graphic mode should both be on.)
- (14) The relationship between Text Area and display position in LCD panel is shown below:

TH	TH+1	 TH+CL
TH+TA	TH+TA+1	 TH+TA+CL
(TH+TA) +TA	(TH+TA) +TA+1	 TH+2TA+CL
(TH+2TA) +TA	(TH+2TA) +TA+1	 TH+3TA+CL
TH+15TA	TH+15TA+1	 TH+15TA+CL

Note: TH: the text home address

TA: the width of text area (number of characters /line), to be defined by user.

CL: number of characters/line set by hardware, the CL of this module is 40.

(15) The relationship between Graphic Area and display position in LCD panel is shown below:

GH (DB7~DB0)	GH+1	 GH+CL
GH+TA	GH+TA+1	 GH+TA+CL
(GH+TA) +TA	(GH+TA) +TA+1	 GH+2TA+CL
(GH+2TA) +TA	(GH+2TA) +TA+1	 GH+3TA+CL
GH+127TA	GH+127TA+1	 GH+127TA+CL

Note:

GH: the graphic home address

TA: the width of graphic area (number of characters /line), to be defined by user.

CL: number of characters/line set by hardware, the CL of this module is 40.

Note: In Text mode or Graphic mode, when TA≠CL, the relationship between the valid display area of the LCD panel and DDRAM address is detailed in 5-6-2

5-6. Commands

The command of this module may have one operand datum, or two operand data or none). It is important to send the data first, and then to send the command code. If the number of the operand data is more than specified, the last are valid. The status check must be performed every time before the data and commands are read or written.

The status word format is as follows:

STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0			
STA0: c	heck cor	nmand e	xecution	capabili	ty 1	: enable	0: dis	sable		
STA1: c	STA1: check data read/write capability 1: enable 0: disable									
STA2: check auto mode data read capability 1: enable 0: disable										
STA3: c	heck aut	lity 1	: enable	0: dis	able					
STA4: n	ot used									
STA5: c	heck cor	ntroller op	peration	capability	y 1	: enable	0: dis	sable		
STA6: e	STA6: error flag. Used for screen peek and screen copy commands									
					1:	error	0: no	error		
STA7: c	heck the	blink co	ndition	1: norma	l display	0: disp	lay off			

Note:

- 1. It is necessary to check STA0 and STA1 at the same time. There is a possibility of erroneous operation due to a hardware interrupt.
- 2. For most modes STA0/STA1 are used at a status check.

- 3. STA2 and STA3 are valid in auto mode; STA0 and STA1 are invalid.
- 4. STA6 is valid in screen peek and screen copy mode.
- 5. STA5 and STA7 mirror the interior operational status.

5-6-1. Registers Setting, the format is as follows: D1,D2

•	•	4	•	•	NIO	N 1.4	NIO
0	0	1	U	U	N2	N1	NU

D1, D2 is the first and the second parameters respectively, and the last byte is command code. According to the values of N0, N1, N2, this command has three meanings.

D1	D2	Code	Function	
X Address	Y Address	24H (NO. 4)	Set cursor pointer	
(lower 7 bits are valid)	(lower 5 bits are valid)	21H (N0=1)		
Address	0011	22H (N4 4)	Set offset register	
(lower 5 bits are valid)	00H	22H (N1=1)		
Low address	High address	24H (N2=1)	Set address pointer	

- A. Set cursor pointer: D1 stands for the horizontal distance (number of characters) of cursor to the top left corner of the real LCD panel. D2 stands for the vertical distance (number of character lines). Setting and changing the cursor position must be performed through resetting the cursor pointer. The cursor pointer is not related to address pointer and has no auto change function.
- B、 Set CGRAM offset register: Set the high 5 bits of CGRAM's 16 bit address in DDRAM. The actual address of CGRAM is:

Offset Adrs: C4 C3 C2 C1 C0

Char. Code: D7 D6 D5 D4 D3 D2 D1 D0

Line Adrs: +) R2 R1 R0

Actual.Adrs.: A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 R2~R0: represent one line of the self-designed 8X8 dots characters.

When the internal CGROM mode is set in mode set, the character code allocated to external character generator is 80H~FFH. When the external CGROM mode is set in mode set, the character code allocated to the external character generator is 00H~FFH.

For example: when allocate the units of 1800H~1FFFH (2K) in DDRAM to CGRAM, the offset register could be set to #03H. Thus, the address of character whose code is 80H in DDRAM is 1C00H~1C07H.

- B. Set address pointer: set the unit address of DDRAM to be accessed. D1 and D2 are the low address and high address of the unit address respectively.
- 5-6-2. Control word setting, the command format is as follows: D1, D2

0 0	2. 00111	ioi woia	ocumig, i		ilana ion	nat io ao	IOIIOWO.	01, 02
	0	1	0	0	0	0	N1	N0

According to different values of N1 and N0, this command has four functions:

N1	N0	D1	D2	Code	Function
0	0	Low adrs.	High adrs.	40H	Set text home address
0	1	Columns	00H	41H	Set text area (number of characters/line)
1	0	Low adrs.	High adrs. 42H		Set graphic home address
1	1	Columns	00H	43H	Set graphic area (number of characters/line)

The text home address corresponds to the character position on the top left corner of display panel. The graphic home address corresponds to the byte position on the top left corner of display panel. The text area (number of characters/line) set and graphic area (number of characters/line) set are used to adjust the width (column) of valid display screen. The width indicates the number of character or the number of bytes can be validly displayed.

Define the width of display screen to be CL by hardware and the width of display screen to be TA by this command, then the relationship between text area and its corresponding position on LCD panel is shown as follows:

(a) when TA<=CL: (TH stands for the text home address)

TH	 TH+TA-1	
TH+TA	 TH+2TA-1	Blank

←------ TA valid display screen -------

(b) when TA>CL:

TH	 TH+CL-1		TH+TA-1
TH+TA	 TH+TA+CL-1		TH+2TA-1
	 	do not transfer	

The way in which the graphic area corresponds to its position in display screen is similar to the way in which the text area corresponds to its position in display screen. The only difference is that in graphic area one byte corresponds to 8 bits graphic data.

If the graphic area is defined to be the same number of characters/line of LCD, the home address of every line equals to end address of the previous line +1.

5-6-	3. N	lode	e setting,	the forn	nat of	comm	nand	is a	s follo	ws:	no p	aramete	r

	<u> </u>						
1	0	0	0	N3	N2	N1	N0

N3: select character generator mode

N3=1, select CGRAM and the character code is 00~FFH.

N3=0, select internal CGROM. Since the character code of CGROM is 00~7FH, when take 80H~FFH as character code, CGRAM is automatically selected

N2~N0: Combined-display mode setting. The functions are shown below:

N2	N1	N0	Means of Combination
0	0	0	"OR" mode
0	0	1	"EXOR" mode
0	1	1	"AND" mode
1	0	0	Text attribute mode

Only when the text mode and graphic mode are both on, the combined display mode and text attribute mode settings are valid. After the text attribute setting, the graphic area will be converted into text attribute area and store the text attribute codes. The text attribute area is of the same size as text area. In addition, the text attribute codes of the character codes in text area are stored in the same address of graphic area. Every byte in the graphic area determines the feature of its corresponding character, including the normal display, reverse display, inhibit display, blink of normal display, blink of reverse display and blink of reverse display of characters. In the text attribute area, the text attribute codes of characters are made up with a byte's low four bits.

D7	7 D6	D5	D4	D3	D2	D1	D0
*	*	*	*	d3	d2	d1	d0

d3: blink control. 1-blink, 0-no blink

d2~d0:

d2	d1	d0	Function
0	0	0	Normal display
1	0	1	Reverse display
0	1	1	Inhibit display

To work in the text attribute mode, the user could build an independent area in the DDRAM as text attribute area. In this case, the graphic home address should be converted into the text attribute home address, and thus keep the data in the previous graphic area. DDRAM could be divided as follows:

Graphic area	
Text attribute area	
Text area	
CGRAM (2K)	

5-6-4. Display mode setting, the format of command is as follows: no parameter

1	0	0	1	N3	N2	N1	N0
---	---	---	---	----	----	----	----

N0: 1/0, cursor blink on/off N1: 1/0, cursor display on/off N2: 1/0, text display on/off

N3: 1/0, graphic display on/off

5-6-5. Cursor pattern select, format is shown as below: no parameter

1	0	1	0	0	N2	N1	N0

The cursor pattern in 8 dots(segment) \times N(line). The value of N is in the range of 1 line to 8 lines (00H \sim 07H).

5-6-6. Data auto read/write mode: no parameter

|--|

Using this command, MPU could continuously read/write the data in DDRAM without inputting the read/write command every time. The address pointer is automatically increased by 1 after each datum. The Auto reset command must be sent after all data have been sent, to clear Auto mode. N1 and N0 function as below:

N1	N0	Code	Function
0	0	вон	Set data auto write
0	1	B1H	Set data auto read
1	*	B2H/B3H	Auto reset

5-6-7. Data read/write mode, the format is shown below: D1,

	1	1	0		0	0	N2	N1	N0	
	01	N2	N1	N) (Code	•	function		
	Data	0	0	0		C0H	Data	Data write, ADP+1		
	Data	0	0	1		C1H	Data	Data read, ADP+1		
	Data	0	1	0		C2H	Data	Data write, ADP-1		
-		0	1	1	(СЗН	Data	Data read, ADP-1		
	Data	1	0	0		C4H	Dat	Date write, same AD		
-		1	0	1	(C5H	Date	e read, s	ame ADP)
- 6	o Sara	on nook	the fo	rm	at of oor	nmand ic	oc follo	wa: na n	aramatar	

5-6-8. Screen peek, the format of command is as follows: no parameter 1 1 1 1 0 0 0 0 0 0

This command is used to transfer 1 byte of displayed data positioned by current address pointer to the data stack; this byte can then be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by this command. The address pointer should be set in graphic area.

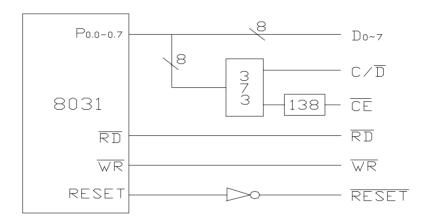
5-6-9. Screen copy, the format of command is as follows: no parameter

The command copies a single raster line of data positioned by the address pointer (in graphic area) to the corresponding area in the graphic area. If the

attribute function is being used, this command is not available.

5-6-10. Bit set/reset: no parameter

_	10. Dit 0001000ti 110 paramotor							
	1	1	1	1	N3	N2	N2	N0


This command is used to set or reset a bit of the byte specified by the address pointer.

N3=1, set; N3=0, reset. N2~N0 corresponds to the D0~D7 bit.

5-7. Module and MPU connection

MPU uses data bus and control lines to control the module by means of direct storage access or I/O access. Interface circuit is shown in following diagram:

MPU: 8031

Data bus of 8031 is connected directly to the data bus of module. RD and WR of 8031 act as the read/write control signal of module. CE can be decoded by address bus. For example: output Y0 of IC 138 as CE. (When test the module independently, CE could be grounded directly.) Output A0 of 8031 address bus as C/D. A0=1 stands for the address of command; A0=0 stands for address of data. Each Subprogram is as follows:

(1) Status read

Registers to be used: R0, A; output register: A store status

BF: MOV R0, #01H ; address of command

MOVX A. @ R0 : read status

RET

Relevant subprograms could be derived from above-mentioned program:

a. Subprogram of STA0 and STA1 status check, Before the command write and data write and read, STA0 and STA1 should both be defined to be "1":

BF1: LCALL BF

JNB ACC.0, BF1 ; STA0 status check JNB ACC.1. BF1 : STA1 status check

RET

b. Subprogram of STA2 status check, STA2 should be checked between reading of each datum. STA2=1 should be confirmed before each reading during the continuous reading.

BF2: LCALL BF

JNB ACC.2, BF2 ;STA2 status check

RET

Similarly, subprogram of STA3 status check is listed as follows:

BF3: LCALL BF

JNB ACC.3, BF3 ; STA3 status check

RET

c. After the screen peek and screen copy commands, the STA6 status should be checked. STA6=0 indicates that the commands are correctly performed. For example:

BF6: LCALL BF

JB ACC.6, ERR : STA6 status check

RET

ERR: ; error disposal program

(2) subprogram of writing command and data

register to be used: R0, R2, R3, R4, A:

input register: R2 is the first parameter, R3 is the second parameter, R4 is the command code

WR: LCALL BF1 : entrance of double parameter command

MOV A, R2 LCALL WR4

WR1: LCALL BF1 ; entrance of single parameter command

MOV A, R3 LCALL WR4

WR2: LCALL BF1 ; entrance of no parameter command

- 16 -

MOV A, R4

SJMP WR5

WR4: MOV R0, #00H ; entrance of writing data

WR5: MOVX @ R0, A

RET

This program is generally used. When entering data and single parameter commands, the data and commands should be sent into R3. The entrance of subprogram is WR4 and WR1 respectively. The entrance of no parameter command is WR2.

(3) subprogram of data writing

register to be used: R0, A; output register: A store data

RD: LCALL BF1

MOV R0, #00H MOVX A, @ R0

RET

5-8. Example of Application Program

The precondition is FS=0, that is, choose the 8X8dots.

5-8-1. Subprogram of clearing DDRAM

CLR: MOV R2, #00H ; RAM address=0000H

MOV R3, #00H

MOV R4, #24H ; set address pointer

LCALL WR

MOV R4, #0B0H ; set data auto write

LCALL WR2

MOV R2, #1FH ; auto write 8K byte

CLR1: MOV R3, #0FFH

CLR2: LCALL BF3 ; check status STA3

CLR A

LCALL WR4 : write 00H

DJNZ R3, CLR2 DJNZ R2, CLR1

MOV R4, #0B3H ; auto reset

LCALL WR2

RET

5-8-2. Subprogram of Initialization

INI: LCALL CLR

MOV R2, #00H ; set text area

MOV R3, #00H MOV R4, #40H LCALL WR MOV R2, #1EH MOV R3, #00H MOV R4, #41H LCALL WR MOV R2, #00H ; set graphic area MOV R3, #08H MOV R4, #42H LCALL WR MOV R2, #1EH MOV R3, #00H MOV R4, #43H LCALL WR MOV R4, #80H ; set display mode LCALL WR2 MOV R4, #94H ; text on LCALL WR2

The following is an example which is to display "!" in the top left corner of the screen.

LCALL INI
MOV R2, #00H
MOV R3, #00H
MOV R4, #24H
LCALL WR
MOV R3, #01H
MOV R4, #0C0H
LCALL WR1
RET

RET

5-8-3. Set CGRAM

Set offset register content

(1) Set the matrix data and character codes of the characters. For example, the Chinese character "北", choose the character codes between 80H and FFH, then the matrix data and character codes of the character "北" are defined as follows:

Structure of "北"			matrix data				character	code	
Top left	04H,	04H,	04H,	04H,	04H,	7CH,	04H,	04H	80H
Bottom left	04H,	04H,	04H,	04H,	1CH,	E4H,	44H,	00H	81H
Top right	80H,	80H,	88H,	98H,	A0H,	C0H,	80H,	80H	82H

Bottom right 80H, 80H, 80H, 8CH, 82H, 82H, 7EH, 00H 83H

Write into CGRAM

WRCG: MOV R2, #03H

MOV R3, #00H

MOV R4, #22H ; set offset register

LCALL WR

MOV DPTR, #TAB1; matrix data home address

MOV R2, #00H

MOV R3, #1CH ; CGRAM address MOV R4, #24H ; set address pointer

LCALL WR

MOV R4, #0B0H ; set auto write

LCALL WR2

MOV R2, #20H ; number of matrix data

WRCG1: LCALL BF3; check status STA3

CLR A

MOVC A, @A+DPTR ; read matrix data LCALL WR4 ; write into CGRAM

INC DPTR

DJNZ R2, WRCG1

MOV R4. #0B2H : auto reset

LCALL WR2

RET

TAB1: DB 04H, 04H, 04H, 04H, 04H, 7CH, 04H, 04H

DB 04H, 04H, 04H, 04H, 1CH, 0E4H, 44H, 00H DB 80H, 80H, 88H, 98H, 0A0H, 0C0H, 80H, 80H DB 80H, 80H, 80H, 80H, 82H, 7EH, 00H

5-8-4. Chinese Characters Display

Matrix data of Chinese character are in the sequence of top left corner (8 bytes from top to bottom) \rightarrow left bottom left corner (8 bytes from top to bottom) \rightarrow bottom right corner(8 bytes from top to bottom).

(1) Display of Chinese Character in Text Mode

In this mode, only 64 Chinese characters with 16X16 dots can be entered as a maximum. (4 character codes for a Chinese character).

The address pointer is already positioned on the top left corner of the character to be entered.

Register to be used: R2, R3, R4, A; input register: R3 (store Chinese character codes)

WRHZT: MOV R4, #0C0H ; data write, address+1

LCALL WR1; R3 set in the main program, for

example R3=80H

INC R3

LCALL WR1 ; R3=82H DEC R3 ; R3=81H

MOV R2, #1CH

MOV R4, #0C1H ; data read, address+1

WRHZT1: LCALL WR2

DJNZ R2, WRHZT1 ; move the address pointer to the

left bottom corner of the

Chinese character

MOV R4, #0C0H LCALL WR1

INC R3

INC R3 ; R3=83H

LCALL WR1

RET

(2) Display of Chinese character in the graphic mode

This method is to build a Chinese character storage area in the ROM of MPU system, the Chinese character matrix should be input byte by byte in graphic mode.

Register to be used: A, R2, R3, R4

DPTR is a home address of one Chinese character matrix array and will be assigned in the main program.

WRHZG: MOV R2, #10H ; number of cycles

MOV A, #00H

WRHZG1: PUSH ACC ; push code into stack

MOVC A, @A+DPTR ; read character matrix

MOV R3, A MOV R4, #0C0H LCALL WR1

POP ACC ; pop code from stack PUSH ACC ; push code into stack

ADD A, #10H ; locate the pointer to the matrix of

the byte on the right

MOVC A, @A+DPTR ; read character matrix

MOV R3, A LCALL WR1

MOV A, R2

MOV R3, A ; R3=R2

MOV R2, #1CH ; number of cycles

MOV R4, #0C1H

WRHZG2: LCALL WR2 ; change the address pointer

DJNZ R2, WRHZG2

MOV A, R3

MOV R2, A ; recover R2

POP ACC ; pop code of stack

INC A ; code+1

DJNZ R2, WRHZG1

RET

5-8-5. Application of Text Attribute Mode

Display the character string "WELCOME!" on the top left corner of the screen: "WELCOME", blink of reverse display; "!", normal display. The subprogram is TCR, in which TAB2 acts as character code and TAB3 as corresponding text attribute code.

TCR: MOV R4, #9CH ;start the text and graphic mode

LCALL WR2

MOV R4, #84H ; text attribute mode set

LCALL WR2 MOV R2, #00H MOV R3, #00H

MOV R4, #24H ; address pointer set

LCALL WR

MOV R2, #00H ; number of characters

; table of characters

TCR1: MOV DPTR, #TAB2

MOV A, R2

MOVC A, @A+DPTR

MOV R3, A MOV R4, #0C0H LCALL WR1

INC R2

CJNE R2, #08H, TCR1

MOV R2, #00H MOV R3, #08H

MOV R4, #24H ; address pointer set

LCALL WR

MOV R2, #00H ; number of characters

TCR2: MOV DPTR, #TAB3; table of characters

MOV A, R2

MOVC A, @A+DPTR

MOV R3, A

MOV R4, #0C0H

LCALL WR1

INC_{R2}

CJNE R2, #08H, TCR2

RET

TAB2: DB 37H, 25H, 2CH, 23H, 2FH, 2DH, 25H, 01H TAB3: DB 0DH, 0DH, 0DH, 0DH, 0DH, 0DH, 0DH, 0BH

5-8-6. Application Program

For example, to display "!" on the top left corner of the screen, the program is:

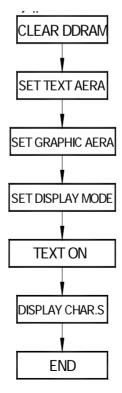
ORG 0000H

STAR: LCALL INI

; initialize

MOV R2, #00H

; display "!"


MOV R3, #00H MOV R4, #24H LCALL WR MOV R3, #01H

MOV R4, #0C0H

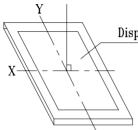
LCALL WR1

RET

The flow chart of this program is

6. Quality level

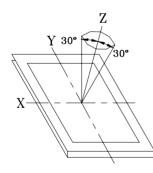
- 6-1. Inspection conditions
- 6-1-1. The environmental conditions for inspection shall be as follows:


Room temperature: $20\pm3^{\circ}$ C

Humidity: $65\pm20\%$ RH

6-1-2. The external visual inspection:

Using a 20W fluorescent lamp for illumination shall perform the inspection. The distance between LCD and the inspector's eyes should be at least 30cm.


6-1-3. (1) Light method

Display Surface

Fluorescent lamp set the perpendicular to the display surface

(2) Inspection distance and angle

Inspection should be performed within \emptyset (\emptyset =30°) from Z axis to each X and Y axis.

Inspection distance of any direction within \emptyset must be kept 30 ± 50 cm to the display surface.

6-2. Sampling procedures for each item's acceptance level table

Defect type	Sampling procedure	AQL	
	MIL-STD-105D Inspection Level I		
Major defect	Normal inspection	Q/ED-01-98(II)	
	Single sample inspection		
	MIL-STD-105D Inspection Level I		
Minor defect	Normal inspection	Q/ED-01-98(II)	
	Single sample inspection		

6-3. Classification of defects

6-3-1. Major defect

A major defect refers to a defect that may substantially degrade usability for product applications.

6-3-2. Minor defect

A minor defect refers to a defect that deviates from existing standards almost unrelated to the effective use of the product or its operation.

6-4 .Inspection standards

Item	Criterion for defects					
1) Display on inspection	(1) Non display (2) Vertical line is deficient (3) Horizontal line is deficient (4) Cross line is deficient					
2) Black / White spot		Minor				
3) Black / White line	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Minor m.				
4) Display pattern	$\frac{A+B}{2} \leqslant 0.45 0 < C \frac{D+E}{2} \leqslant 0.35 \frac{F+G}{2} \leqslant 0.35$ Note: 1) Up to 3 damages acceptable 2) Not allowed if there are two or more pinholes every three-fourths inch.	Minor				

Item	Criterion for defects					
	Size Φ (mm) Acceptable Number	type				
	Φ≤0.7 Ignore (note)					
	0.7<Ф≤1.0					
5) Spot-like contrast	1.0<Ф≤1.5	Minor				
irregularity	1.5<Φ 0					
	Note: 1) Conformed to limit samples.]				
	Intervals of defects are more than 30mm.					
7) Scratches and dent on the	Scratches and dent on the polarizer shall be in the acco	rdance with				
polarizer	"2) Black/white spot", and "3) Black/White line".	Minor				
8) Stains on the surface of	Stains which cannot be removed even when wiped lightly	,				
LCD panel	with a soft cloth or similar cleaning.	Minor				
200 parior	No rainbow color is allowed in the optimum contrast on	state within				
9) Rainbow color	the active area.	Minor Minor				
10) Viewing area	Polarizer edge or line is visible in the opening viewing a	area due to Minor				
encroachment	polarizer shortness or sealing line.					
11) Bezel appearance	Rust and deep damages that are visible in the bezel are	rejected. Minor				
12) Defect of land surface contact	Evident crevices that are visible are rejected.					
	(1) Failure to mount parts					
13) Parts mounting	(2) Parts not in the specifications are mounted	Major				
	(3) For example: Polarity is reversed, HSC or TCP falls	off.				
40.5	(1) LSI, IC lead width is more than 50% beyond pad out	line.				
14) Part alignment	(2) More than 50% of LSI, IC leads is off the pad outline	Minor				
	(1) 0.45<Φ, N≥1	Major				
15) Conductive foreign	(2) 0.3<Ф≤0.45, N≥1	Minor				
matter (solder ball,	Φ: Average diameter of solder ball (unit: mm)					
solder hips)	(3) 0.5 <l, n≥1<="" td=""><td>Minor</td></l,>	Minor				
	L: Average length of solder chip (unit: mm)					
	(1) Deep damage is found on copper foil and the patte	rn is nearly Major				
16) PCB pattern damage	broken.					
	(2) Damage on copper foil other than 1) above	Minor				
	(1) Due to PCB copper foil pattern burnout, the					
	connected, using a jumper wire for repair;2 or more	-				
17) Faulty PCB correction	corrected per PCB.	Minor				
,	(2) Short-circuited part is cut, and no resist coating					
	performed.					
18) Bezel flaw	Bezel claw missing or not bent	Minor				
-, = ===:	· ·· · · · · · · · · · · · · · · · · ·					

Item	Criterion for defects				
item					
	(1) Failure to stamp or label error, or not legible (all acceptable if				
19) Indication on name plate	legible).	Minor			
(sampling indication label)	(2) The separation is more than 1/3 for indication discoloration, in	IVIII IOI			
	which the characters can be checked.				

7. Reliability

7-1 Lifetime

50,000 hours (25°C in the room without ray of sun)

7-2 Items of reliability (See the next page)

Item		Condition	Criterion					
High Temperature Operating		60°C 96hrs	No cosmetic failure is allowable. Contrast ratio should be between initial					
2)	Low Temperature Operation	-20℃ 96hrs	value $\pm 10\%$. Total current consumption should be below double of initial value.					
3)	Humidity	40℃, 90%RH, 96hrs						
4)	High Temperature	70 ℃ 96hrs	No cosmetic failure is allowable.					
5)	Low Temperature	-30℃ 96hrs	Contrast ratio should be between initial value $\pm 20\%$.					
6)	Thermal shock	25°C→30°C→25°C→70°C 5(min) 30(min) 5(min) 30(min) 5 cycle, 55~60%RH	Total current consumption should be below double of initial value.					
7)	Vibration	10~55~10hz amplitude: 1.5mm 2hrs for each direction (X,Y,Z)	No defects in cosmetic and operational function are allowable. Total current consumption should be below double of initial value.					

8. Handling precautions

8-1 Mounting method

A panel of LCD module made by Dalian Eastern Display Co., Ltd. consists of two thin glass plates with polarizers that easily get damaged.

And since the module is constructed and fixed by utilizing fitting holes in the Printed Circuit Board (PCB), extreme care should be used when handling the LCD modules.

8-2 Cautions of LCD handling and cleaning

When cleaning the display surface, wipe lightly with soft cloth with solvents
(recommended below).
□ Isopropyl alcohol
□ Ethyl alcohol
□ Trichlorotriflorothane
Do not wipe the display surface with dry or hard materials that may damage
the polarizer surface.
Do not use the following solvents:
□ Water
□ Ketene
□ Aromatics
Caution against static charge
The LCD module uses C-MOS LSI drivers. So we recommend you:

8-3

Connect any unused input terminal to V_{dd} or V_{ss}. Do not input any signals before power turns on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

8-4 Packaging

- A module employs LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity.

8-5 Caution for operation

- It is an indispensable condition to drive LCD module within the limits of the specified voltage since the higher voltage over the limits may cause the shorter life of LCD module.
 - An electrochemical reaction due to DC (direct current) causes LCD undesirable deterioration so that the uses of DC (direct current) drive should be avoided.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD module may show dark color in them. However those phenomena do not mean malfunction or out of order of LCD module, which will come back in the specified operating temperature.

8-6 Storage

In the case of long time storage, the following ways are recommended:

- To be stored in polyethylene bag with the opening sealed so as to prevent fresh air out. Do not put desiccant into the bag.
- To be placed in a dark place where there is neither exposure to direct sunlight nor light. Keep within the storage temperature range.
- To be stored with no touch on polarizer surface by any thing else.

8-7 Safety

- It is recommended to crash damaged or unnecessary LCD into pieces and to wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off with soap and water at once.

9. Precaution for use

- 9-1 Both parties should provide a limit sample on an occasion when both parties agree to its necessity.
 - The judgement by a limit sample shall take effect after the limit sample has been established and confirmed by both parties
- 9-2 On the following occasions, the handling of problem should be decided through discussion and agreement between responsible of the both parties.
 - When a question is arisen in this manual.
 - When a new problem is arisen which is not specified in this manual.
 - -Some problem is arisen due to the change of inspection and operating conditions in users.
 - When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

10. Appendix

Character Code Table

MSB	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0			11			***			Ĭ,	,1					**	
1			•";			i		**************************************			##	# ;	<	*****	>	•";
2				! ! ! 							!	K				
3				<u></u> ;			Ļ	W	X	Y			`\		.***.	
4	٠.	-:::	<u>l.</u> ;	::::		===	+		 	1.	i	k	1	m	l''i	
5	 	-::: <u> </u>	!·"·		- <u>+</u>	L.L	1.,1	l,,i	×			₹		<u>.</u> }	•*••	
6	;;;;			:::: ::::!	-==		::: ::::!					1		-, -1,	;::: <u>:</u>	
7				 	::::	·.	 L.i.	\ \.\.					#*·			#"